Skip to main content
Log in

Theory of coherent charge transport in junctions involving unconventional superconducting materials

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Recent theoretical studies of coherent charge transport in junctions involving unconventional superconducting materials such as high-temperature superconducting iron-based pnictides (FeBS) and in structures with induced superconductivity which are formed of a thin metal layer with spin–orbit coupling in contact with an s-wave superconductor (SSO) are reported. The theoretical analysis is performed with our unified approach based on the tight-binding method and boundary conditions obtained for it. This approach makes it possible to take into account a complex nonparabolic and anisotropic spectrum of normal excitations in unconventional superconducting materials and their multiband character, as well as unusual types of symmetries of the superconducting order parameter in them. The possibility of a semiclassical description in the case of intraorbital superconducting pairing is demonstrated. The method of calculations and their results are presented for the conductivities of junctions between a normal metal and unconventional superconducting materials, as well as for the Josephson current. Comparison with the experiment for the junction with FeBS is performed and indicates the presence of the unusual s± symmetry of the order parameter. An experiment is proposed to test our theoretical results for SSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  Google Scholar 

  3. Y. S. Hor, A. J. Williams, J. G. Checkelsky, R. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).

    Article  ADS  Google Scholar 

  4. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  5. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  6. H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).

    Article  ADS  Google Scholar 

  7. A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Phys. Rev. B 79, 134502 (2009).

    Article  ADS  Google Scholar 

  8. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, Oxford, UK, 1985).

    Google Scholar 

  9. D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).

    Article  ADS  Google Scholar 

  10. C. C. Tsue and J. R. Kirtley, Rev. Mod. Phys 72, 969 (2000).

    Article  ADS  Google Scholar 

  11. A. V. Burmistrova and I. A. Devyatov, JETP Lett. 96, 391 (2012).

    Article  ADS  Google Scholar 

  12. A. V. Burmistrova, I. A. Devyatov, A. A. Golubov, K. Yada, and Y. Tanaka, J. Phys. Soc. Jpn. 82, 034716 (2013).

    Article  ADS  Google Scholar 

  13. A. V. Burmistrova, I. A. Devyatov, A. A. Golubov, K. Yada, and Y. Tanaka, Supercond. Sci. Technol. 27, 015010 (2014).

    Article  ADS  Google Scholar 

  14. A. V. Burmistrova and I. A. Devyatov, Europhys. Lett. 107, 67006 (2014).

    Article  ADS  Google Scholar 

  15. A. V. Burmistrova, I. A. Devyatov, A. A. Golubov, K. Yada, Y. Tanaka, M. Tortello, R. S. Gonnelly, V. A. Stepanov, X. Ding, H.-H. Wen, and L. H. Green, Phys. Rev. B 91, 214501 (2015).

    Article  ADS  Google Scholar 

  16. A. V. Burmistrova, I. A. Devyatov, and I. E. Batov, Europhys. Lett. 114, 57005 (2016).

    Article  ADS  Google Scholar 

  17. A. V. Burmistrova and I. A. Devyatov, JETP Lett. 95, 239 (2012).

    Article  ADS  Google Scholar 

  18. M. A. N. Araújo and P. D. Sacramento, Phys. Rev. B 79, 174529 (2009).

    Article  ADS  Google Scholar 

  19. I. B. Sperstad, J. Linder, and A. Sudbø, Phys. Rev. B 80, 144507 (2009).

    Article  ADS  Google Scholar 

  20. J. Linder, I. B. Sperstad, and A. Sudbø, Phys. Rev. B 80, 20503(R) (2009).

  21. A. A. Golubov, A. Brinkman, Y. Tanaka, I. I. Mazin, and O. V. Dolgov, Phys. Rev. Lett. 103, 077003 (2009).

    Article  ADS  Google Scholar 

  22. I. A. Devyatov, M. Yu. Romashka, and A. V. Burmistrova, JETP Lett. 91, 297 (2010).

    Article  ADS  Google Scholar 

  23. A. V. Burmistrova, T. Yu. Karminskaya, and I. A. Devyatov, JETP Lett. 93, 133 (2011).

    Article  ADS  Google Scholar 

  24. A. V. Burmistrova, I. A. Devyatov, M. Yu. Kupriyanov, and T. Yu. Karminskaya, JETP Lett. 93, 203 (2011).

    Article  ADS  Google Scholar 

  25. W.-Q. Chen, F. Ma, Z.-Y. Lu, Z.-Y. Lu, and F.-C. Zhang, Phys. Rev. Lett. 103, 207001 (2009).

    Article  ADS  Google Scholar 

  26. E. Berg, N. H. Lindner, and T. Pereg-Barnea, Phys. Rev. Lett. 106, 147003 (2011).

    Article  ADS  Google Scholar 

  27. A. E. Koshelev, Phys. Rev. B 86, 214502 (2012).

    Article  ADS  Google Scholar 

  28. V. G. Stanev and A. E. Koshelev, Phys. Rev. B 86, 174515 (2012).

    Article  ADS  Google Scholar 

  29. Shi-Zeng Lin, Phys. Rev. B 86, 014510 (2012).

    Article  ADS  Google Scholar 

  30. Z. Huang and X. Hu, Appl. Phys. Lett. 104, 162602 (2014).

    Article  ADS  Google Scholar 

  31. S. Apostolov and A. Levchenko, Phys. Rev. B 86, 224501 (2012).

    Article  ADS  Google Scholar 

  32. C. Nappi, S. D. Nicola, M. Adamo, and E. Sarnelli, Europhys. Lett. 102, 47007 (2013).

    Article  ADS  Google Scholar 

  33. D. Wang, H.-Y. Lu, and Q.-H. Wang, Chin. Phys. Lett. 30, 77404 (2013).

    Article  MathSciNet  Google Scholar 

  34. W.-F. Tsai, D.-X. Yao, B. A. Bernevig, and J. P. Hu, Phys. Rev. B 80, 012511 (2009).

    Article  ADS  Google Scholar 

  35. S. Tewari, T. D. Stanescu, J. D. Sau, and S. Das Sarma, New J. Phys. 13, 065004 (2011).

    Article  ADS  Google Scholar 

  36. A. C. Potter and P. A. Lee, Phys. Rev. B 83, 184520 (2011).

    Article  ADS  Google Scholar 

  37. A. B. Svidzinskii, Spatially Inhomogeneous Problems in the Theory of Superconductivity (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  38. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  39. Q.-G. Zhu and H. Kroemer, Phys. Rev. B 27, 3519 (1983).

    Article  ADS  Google Scholar 

  40. D.-J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1966).

    Article  ADS  Google Scholar 

  41. W.-A. Harrison, Phys. Rev. 123, 85 (1961).

    Article  ADS  Google Scholar 

  42. B. Laikhtman, Phys. Rev. B 46, 4769 (1992).

    Article  ADS  Google Scholar 

  43. Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).

    Article  ADS  Google Scholar 

  44. S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C. Zhang, Phys. Rev. B 77, 220503(R) (2008).

  45. M. M. Korshunov and I. Eremin, Phys. Rev. B 78, 140509R (2008).

  46. D. V. Goncharov, I. A. Devyatov, and M. Yu. Kupriyanov, J. Exp. Theor. Phys. 99, 1074 (2004).

    Article  ADS  Google Scholar 

  47. I. Kulik and A. N. Omel’yanchuk, Low Temp. Phys. 3, 459 (1977).

    Google Scholar 

  48. I. Kulik and A. N. Omel’yanchuk, Low Temp. Phys. 4, 142 (1978).

    Google Scholar 

  49. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).

    Article  ADS  Google Scholar 

  50. A. Furusaki and M. Tsukada, Solid State Commun. 78, 299 (1991).

    Article  ADS  Google Scholar 

  51. P. F. Bagwell, Phys. Rev. B 46, 12573 (1992).

    Article  ADS  Google Scholar 

  52. C. W. J. Beenakker and H. van Hauten, Phys. Rev. Lett. 66, 3056 (1991).

    Article  ADS  Google Scholar 

  53. Y. Tanaka and S. Kashiwaya, Phys. Rev. B 56, 892 (1997).

    Article  ADS  Google Scholar 

  54. A. A. Golubov and I. I. Mazin, Appl. Phys. Lett. 102, 032601 (2013).

    Article  ADS  Google Scholar 

  55. P. Siedel, Supercond. Sci. Technol. 24, 043001 (2011).

    Article  ADS  Google Scholar 

  56. A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).

    Book  Google Scholar 

  57. H. Sellier, C. Baraduk, F. Lefloch, and R. Calemczuk, Phys. Rev. Lett. 92, 257005 (2004).

    Article  ADS  Google Scholar 

  58. T. D. Stanescu and S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013).

    ADS  Google Scholar 

  59. E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  60. A. F. Volkov, P. H. C. Magnée, B. J. van Wees, and T. M. Klapwijk, Physica C 242, 261 (1995).

    Article  ADS  Google Scholar 

  61. T. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev. B 74, 035318 (2006).

    Article  ADS  Google Scholar 

  62. T. D. Stanescu, J. D. Sau, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 81, 241310 (2010).

    Article  ADS  Google Scholar 

  63. K. Flensberg, Phys. Rev. B 82, 180516 (2010).

    Article  ADS  Google Scholar 

  64. K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009).

    Article  ADS  Google Scholar 

  65. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  66. J. Eroms and D. Weiss, Advances in Solid State Phys. 46, 141 (2008).

    Article  Google Scholar 

  67. F. Rohlfing, G. Tkachov, F. Otto, K. Richter, D. Weiss, G. Borghs, and C. Strunk, Phys. Rev. B 80, 220507 (2009).

    Article  ADS  Google Scholar 

  68. I. A. Devyatov and A. V. Burmistrova, in Proceedings of the 5th International Conference on Fundamental Problems of High Temperature Superconductivity FPS-15, Oct. 5–9, 2015 (Fiz. Inst. AN, Moscow, 2015), p.42.

    Google Scholar 

  69. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Devyatov.

Additional information

Original Russian Text © A.V. Burmistrova, I.A. Devyatov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 8, pp. 593–603.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmistrova, A.V., Devyatov, I.A. Theory of coherent charge transport in junctions involving unconventional superconducting materials. Jetp Lett. 104, 578–587 (2016). https://doi.org/10.1134/S0021364016200091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016200091

Navigation